Communicating Science and Technology/1

Washington State University
MAJOR CURRICULAR CHANGE FORM - NEW/RESTORE COURSE

☐ Please attach rationale for your request, a complete syllabus, and explain how this impacts other units in Pullman and other campuses (if applicable).
☐ Obtain all required signatures with dates.
☐ Provide original stapled packet of signed form/rationale statement/syllabus PLUS 10 stapled copies of complete packet to the Registrar's Office, campus mail code 1035.
☐ Submit one electronic copy of complete packet to wasu.curriculum@wsu.edu.

Requested Future Effective Date: Fall 2015 (term/year) Course Typically Offered: Fall/Spring

DEADLINES: For full term effective date: October 1st; for spring or summer term effective date: February 1st. See instructions.
NOTE: Items received after deadlines may be put back in the back of the line or forwarded to the following year. Please submit on time.

☐ New Course ☐ Temporary Course ☐ Restore Course

Com 400 ☐ Communicating Science and Technology

Course subject/crosslist: ☐ Communicating Science and Technology
Course no. ☐ 3 (2.5 -)

Credit hrs: ☐ 3 Junior standing Certified in a major
lecture hrs: ☐ 2.5 prerequisite
per week: ☐ lab or studio hrs: ☐ 4
prereq: ☐ per week: ☐ hours

Description for catalog: Communicating science and technological issues to professional and lay audiences.

Additional Attributes: Check all that apply.
☐ Crosslisting (between WSU departments)*
☐ Variable credit:
☐ Repeat credit (cum. max. hrs): ___________
☐ Special Grading: ☐ S, F; ☐ A, S, F (PEACT only); ☐ S, M, F (VET MED only); ☐ H, S, F (PHARMACY, PHARDCSI only)
☐ Cooperative with UI
☐ Other (please list request): ___________

The following items require prior submission to other committees/depts. (SEE INSTRUCTIONS.)
☐ Request to meet Writing in the Major [M] requirement (Must have All-University Writing Committee Approval.)
☐ Request to meet UCORE in ___________ (Must have UCORE Committee Approval) ✔ See instructions.
☐ Special Course Fee ___________ (Must submit request to University Receivables.)

Contact: Sara Stout Phone number: 335-2190 Campus mail code: 2530
Email: ssstout@wsu.edu Instructor, if different: Bimbasir rom

Chair/date Dean/date All-University Writing Com / date
Chair (if croslisted/interdisciplinary)* Dean (if croslisted/interdisciplinary)* UCORE Committee Approval Date

Catalog Subcommittee Approval Date GSC or AAC Approval Date Faculty Senate Approval Date

*If the proposed change impacts or involves collaboration with other units, use the additional signature lines provided for each impacted unit and college.
Course Rationale:
A 2015 survey conducted by the Pew Research Center of U.S. based scientists connected with the American Association for the Advancement of Science (AAAS) found that 87% agree with the statement “Scientists should take an active role in public policy debates about issues related to science and technology.” Just 13% of these scientists back the opposite statement: “Scientists should focus on establishing sound scientific facts and stay out of public policy debates.” Given this rising importance of the public communication of science, and drawing upon the core strengths of our faculty in science, risk, and strategic communication, the College of Communication would like to offer a course on communicating science and technology. Students in both the Murrow Science Communication emphasis and others majoring in science and technology across the university often lack the subject expertise to be able to translate science and technology accurately and effectively to those outside the field. Students in science and technology fields at WSU often do not have adequate opportunity to cultivate their skills in communicating complex topics, using journalistic-style writing, public speaking and the skills of multimedia public relations. This course will bring together students from Communication, and Scientific and Technology majors in a collaborative learning environment. The course will cultivate students’ practical communication skills, with particular emphasis on effective speaking, writing, and exhibiting in visual formats scientific and science-related topics to a variety of audiences, ranging from lay audiences to policymakers, subject experts and front line practitioners, via traditional and multi-media channels.

What is the purpose of this course?
To prepare students to communicate scientific and technological topics to audiences such as policymakers, journalists and the public using the skills and approaches of public relations and journalism, modern public speaking techniques, and multi-media production skills.

Who is the intended audience?
Majors in Communication who are interested in adapting journalistic and public relations skills to communicate scientific and technological topics, and majors in the science and technology fields who want to learn the skills of communicating with non-specialized audiences.

What are the pre-requisites?
Junior standing and certification in a major.

What is the overlap with other courses?
There is no significant overlap with any other course on campus. Com 400 is not a technical writing or Rhetoric course. There are two courses in the English department that teach technical writing and the rhetoric of science and technology. Technical writing and rhetoric are specialized areas that are traditional domains of English. These English
courses do not teach the skills of journalism and public relations, the core fields of the College of Communication and the focus of Com 400.

ENG 402 focuses on technical writing for technical audiences. According to the course description on the course syllabus:

English 402 (Technical and Professional Writing) focuses on the forms of writing required in professional, administrative, and research contexts: memoranda and letters, including job application materials; proposals; research materials, including annotated bibliographies; and technical reports. This course includes more than merely mastering the forms of writing, however; even more important is understanding the rhetorical contexts for writing, such as matters of ethics, subject, audience, and purpose.¹

The other course taught in English is ENG 495 Rhetoric of Science and Technology. The course description states:

Written, visual, and verbal conventions of scientific disciplines for academic, scientific, technical, and public audiences.

As the description makes clear, while ENG 495 (apparently) touches on public audiences, its focus is on scientific and technical audiences and publications.

Neither of these courses serves the needs of Communication students or Science/Technology students who are interested in adapting the techniques of journalism and public relations – the core majors in the College of Communication – to the communication of scientific information to non-specialists.

Why is the College of Communication qualified to teach this course?

COM 400 builds on the College of Communication’s existing array of science, environment, health, risk and crisis communication courses. The College’s expertise is reflected in a new grant-funded Science Newsroom (http://bit.ly/1ARDCfD) in partnership with WSU’s Center for Environmental Research, Education and Outreach (CEREO), through which Murrow undergraduate students work with graduate students in Environment and Science to widely communicate their research. The course draws on the expertise of Murrow faculty in our Science Communication Research Group, who are currently involved in 11 significant science and/or environmental research projects (http://bit.ly/1wFjihL).

¹ We have attached a syllabus for ENG 402, which we found online, for comparison purposes. The Dept. of English did not respond to our requests for a more updated syllabus or for a syllabus for ENG 495.
COM 400: Communicating Science and Technology

Tues/Thurs:

Instructor:
3 Credit Hours

Office Hours: Tues/Thurs & by appointment

Office: 365A Murrow West

Email:

Phone: 509-335-4448

Course Description

A 2015 survey conducted by the Pew Research Center of U.S. based scientists connected with the American Association for the Advancement of Science (AAAS) found that 87% agree with the statement “Scientists should take an active role in public policy debates about issues related to science and technology.” Just 13% of these scientists back the opposite statement: “Scientists should focus on establishing sound scientific facts and stay out of public policy debates.” Given this rising importance of the public communication of science, COM 400 will teach you to effectively communicate what you learn in your college science courses to various audiences including those who do not have a background in science. Communication students often lack the subject expertise to be able to translate science and technology accurately and effectively. Students in science and technology fields at WSU often do not have adequate opportunity to cultivate their skills in communicating complex topics for the media and to other non-specialist audiences. This course will bring together students from Communication and scientific and technology fields to share their areas of expertise. The course will teach you how to communicate knowledge gained from both primary and popular scientific literature to a variety of audiences (i.e. the public, policymakers, journalists and other non-scientists). The course will train you in ‘science translation’ by teaching you how to apply the basic techniques of public relations, advertising and journalism to the specialized nature of scientific information; how to make public presentations; how to work with reporters by providing accurate, informative information about your science to a broad audience, including the public, policy-makers, and grant-makers; and how to communicate science online by building and maintaining a multi-media online presence to connect with the public directly.

Science communication is the exchange of information that helps people interact with technology and solve complex problems. Almost every day, we make decisions or take actions that depend on scientific and technological information. To interact effectively with technology, we need information that is not only technically accurate, easy to understand and use, but communication that also factors in the varied cultural, national, ethnic, racial, and gender biases and identities of both its producers and end-users. COM 400 is a class that will prepare you to effectively use communication skills—both oral, written and digital—in the presentation of scientific information in an increasingly globalized world. It is aimed at both Communication students who want to use their
Communicating Science and Technology/5

skills to communicate scientific topics and students majoring in Science and related fields who want to learn how to better communicate with those outside their field, using the basics of public speaking, non-technical writing, multi-media and public relations.

The class will meet two times a week for 75 minutes each. In addition there will be substantial work outside of the classroom in the form of workshops, preparation for team projects and team workshops. Com 400 aims to meet several of WSU UCORE learning goals that can be found here: http://ugr.wsu.edu/faculty/7goals.html

The specific learning goals to be emphasized are below. Students will learn to:

- Speak with comfort in front of groups.
- Write for non-specialists using journalistic techniques.
- Use multi-media technology for presentations.
- Adapt the skills of public relations to the communication of science.
- Learn to communicate with the media through press releases and news conferences.
- Employ PowerPoint, Infographics and other tools of visual communication effectively.
- Gain knowledge to prepare a “How To” video project.
- Understand good listening; oral communication.
- Deliver team presentations.
- Conduct meetings and run brainstorming sessions.
- Develop persuasive presentations.
- Prepare effective resumes, cover letters, and job searches.
- Employ interview skills.
- Recognize how circumstances, background, values, interests and needs shape communication sent and received.
- Integrate and synthesize knowledge from multiple sources.
- Communicate clearly, concisely, and effectively to show awareness of contexts, audiences, styles, and conventions
- Understand diverse viewpoints, including different philosophical and cultural perspectives
- Critically assess their own core values, cultural assumptions and biases in relation to those held by other individuals, cultures, and societies.
- Choose appropriate communication medium and technology.
- Recognize the value of clear and concise communication.
- Understand the audience and structuring of communication.
- Employ the forms of arguments/reasoning.
- Apply knowledge of scientific vocabulary and technical data-driven communication in lay contexts.
- Work effectively in teams.
Potential Textbooks

Science Communication: A Practical Guide for Scientists by Laura Bowater & Kay Yeoman (Wiley-Blackwell)
Communicating Science: A Practical Guide by Pierre Laszlo (Springer)
Handbook of Public Communication of Science and Technology by Massimiano Bucchi (Routledge)
Introduction to Speech Communication by Beebe and Ivy (Pearson online module)

Other assigned readings will be available on Angel. **Please carry your textbook to class everyday**

Student Learning Objectives

<table>
<thead>
<tr>
<th>WSU Student Learning Objectives</th>
<th>Matching 475 Learning Objectives</th>
<th>Matching 475 Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical and Creative Thinking: 1. Define, analyze, and solve problems. 2. Integrate and synthesize knowledge from multiple sources. 3. Assess the accuracy and validity of findings and conclusions. 4. Understand how one thinks, reasons, and makes value judgments, including ethical and aesthetical judgments. 5. Understand diverse viewpoints, including different philosophical and cultural perspectives. 6. Combine and synthesize existing ideas, images, or expertise in original ways. 7. Think, react, and work in an imaginative way characterized by a high degree of innovation, divergent thinking, and risk taking.</td>
<td>Students will: 1. Understand the audience and structuring of communications 2. Employ the forms of arguments/reasoning 3. Work effectively in teams 4. Deliver team scientific presentations 5. Understand the audience and structuring of communications 6. Develop persuasive presentations</td>
<td>Project I (Science Infographic/Poster)</td>
</tr>
<tr>
<td>Quantitative and symbolic reasoning: 1. Explain information presented in mathematical</td>
<td>Students will: 1. Develop and present lab reports 2. Apply knowledge of</td>
<td>Project I (Science Infographic/Poster)</td>
</tr>
</tbody>
</table>

Project II (Product and Process |
| Communicating Science and Technology/7 | forms (e.g., equations, graphs, diagrams, tables, and words).
2. Convert relevant information into various mathematical forms (e.g., equations, graphs, diagrams, tables, and words). | scientific vocabulary and technical data-driven communication
3. Employ PowerPoint and visual communications effectively | Description Team Project)

Project III (Analytical Report)

Project IV: Mock Press Conference

Project V: “How To” Video/Blog Creation

Visual Design (mini-assignment)

| Information Literacy:
1. Determine the extent and type of information needed.
2. Implement well-designed search strategies.
3. Access information effectively and efficiently from multiple sources.
4. Assess credibility and applicability of information sources.
5. Use information to accomplish a specific purpose.
6. Access and use information ethically and legally. | Students will:
1. Apply knowledge of scientific vocabulary and technical data-driven communication
2. Develop persuasive presentations
3. Deliver team technical presentations
4. Develop and present lab reports | Project III (Analytical Report)

Evaluating Information (mini-assignment)

Usability Test (mini-assignment)

| Communication Skills:
1. Recognize how circumstances, background, values, interests and needs shape communication sent and received.
2. Tailor message to the audience.
3. Express concepts, propositions, and beliefs in coherent, concise and technically correct form.
4. Choose appropriate communication medium and technology.
5. Speak with comfort in front of groups. | Students will:
1. Demonstrate the value of clear and concise communication
2. Understand the audience and structuring of communications
3. Work effectively in teams
4. Employ issue analysis to plan team project work
5. Demonstrate understanding of good listening; oral | Project I (Science Infographic/Poster)

Project II (Product and Process Description Team Project)

Project IV (Mock Press Conference)
------------------------------------ |
| 6. Follow social norms for individual and small group interactions, which includes listening actively. | communications
6. Employ PowerPoint and other visual communications effectively
7. Develop and deliver team technical presentations, lab reports
8. Prepare “How To” video project
9. Conduct meetings and run brainstorming sessions
10. Develop persuasive presentations
11. Employ interview skills. |
Major Assignments & Brief Descriptions

Project I: Translating Science/Technology (Poster/Infographic Project)
Individual students will develop and refine an Infographic/Poster representation of a scientific experiment/study.

Project II: Product and Process Description Project
Individual students will choose a product requiring a description and supply one after identifying the audience and purpose. Select a specialized process with at least 10 distinct steps you understand well. Provide a process description using the textbook guidelines.

Project III: Analytical Report
Teams will identify a science project/experiment and compile a formal analytical report that details the significance of the project and its results. The report will include a proposal memo, bibliography, and progress reports.

Project IV: Mock Press Conference Presentation of Project III
Teams will present project III to the lay audience in a mock press conference. Teams that are not presenting on a particular day will act as the media representatives and pose questions about the science project/experiment. All teams will need to compose an audience and use profile and submit it to the instructor.

Project V: “How to” video (assembling process must have at least 12 steps)/Blog Creation
Teams will choose a product that includes an assembling process with at least 12 distinct steps. Compose a script for a video that demonstrates the assembly process. Then build a storyboard. Shoot video. Edit the piece by providing separate segments that orient the viewer, giving a list of parts, supplying step-by-step instructions, and offering a conclusion (such as a shot of the assembled product in action and a closing remark). The video must be at least 5 minutes in length.

In addition to the five major projects, individual students are required to complete and bring in four mini assignments for workshop in class. You will submit these assignments to the instructor at the end of class in hard copy. Each assignment carries 10 points. I do not accept late submissions for mini-assignments. The mini-assignments are below:
1) Evaluating Information in Digital and Social Media
2) Visual Design
3) Project Proposals for Scientists
4) Conducting a Usability Test

Grade Breakdown
Communicating Science and Technology/10

<table>
<thead>
<tr>
<th>Project</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>40</td>
</tr>
<tr>
<td>II</td>
<td>30</td>
</tr>
<tr>
<td>III</td>
<td>50</td>
</tr>
<tr>
<td>IV</td>
<td>30</td>
</tr>
<tr>
<td>V</td>
<td>40</td>
</tr>
<tr>
<td>Mini-Assignments</td>
<td>40</td>
</tr>
<tr>
<td>Attendance</td>
<td>30</td>
</tr>
<tr>
<td>Class Participation</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
</tr>
</tbody>
</table>

Grade Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>292-300</td>
</tr>
<tr>
<td>A-</td>
<td>281-291</td>
</tr>
<tr>
<td>B+</td>
<td>270-280</td>
</tr>
<tr>
<td>B</td>
<td>259-269</td>
</tr>
<tr>
<td>B-</td>
<td>248-258</td>
</tr>
<tr>
<td>C+</td>
<td>237-247</td>
</tr>
<tr>
<td>C</td>
<td>226-236</td>
</tr>
<tr>
<td>D+</td>
<td>204-214</td>
</tr>
<tr>
<td>D</td>
<td>193-203</td>
</tr>
<tr>
<td>F</td>
<td>Below 192</td>
</tr>
</tbody>
</table>

You must wait twenty-four hours after receiving a grade to discuss it with your professor. For privacy reasons I'll not discuss your grades over email. A meeting must be scheduled between the professor and student. If necessary, I may ask you to submit a written petition together with your work in question. The classroom is not an appropriate place for these discussions.

Incompletes will NOT be given except in cases of documented emergencies, and the student must be passing the course at the time the Incomplete is requested. The incomplete will be assigned ONLY for those circumstances (sickness, accident, death of a family member) that meet the literal interpretation of Academic Rule, 90h. Sickness, accident or death of a family member must be documented.

Class Participation & Attendance

To successfully complete this class, you must faithfully attend class and complete all assignments. Participation will be assessed based both on the quantity and quality of your contributions in class including workshops, peer review comments, and class discussions. Because we will be working collaboratively on many assignments, your regular attendance is vital. Please note on the schedule the occasions when attendance is absolutely required. Some specifics:

*more than three absences will seriously jeopardize your grade
* I take attendance within the first 5 minutes of class. Please be in class before that time. If you enter the room after roll call, you will be marked “tardy.” Three tardies make up one absence.
* planned absences must be discussed and approved by the instructor prior to the absence.
* planned absences count in the total of absences.
* absences due to University business (athletic commitments, academic conferences etc.) can be excused. You will need to supply a letter on official letterhead from your supervisor clearly mentioning the dates and purpose of your absences
* Late work will receive a deduction of half a letter grade for each day past the deadline. Work turned in later than one week past the original due date will receive an automatic grade of F.

Academic Integrity Statement:

Academic integrity is the cornerstone of the university. You assume full responsibility for the content and integrity of the academic work you submit. You may collaborate with classmates on assignments, with the instructor’s permission. However the guiding principle of academic integrity shall be that your submitted work, examinations, reports, and projects must be your own work.

Cheating and academic misconduct are defined in the Standards for Student Conduct WAC 504-26-010, which can be found here: http://conduct.wsu.edu/default.asp?PageID=5024.

It is your responsibility to read and understand these definitions. Lack of knowledge is not an excuse for academic misconduct. One of the common violations is plagiarism, which is misappropriation of intellectual property without giving due credit to the author. Instructors in the Murrow College use Turnitin (www.turnitin.com), a software application that is specifically designed to detect plagiarism.

Anyone who violates WSU’s Standards of Conduct for Students will be reported to the Office of Student Affairs. When academic misconduct charges are brought against a student, she or he no longer has the option of withdrawing from the class, and can be retroactively re-enrolled in the class.

Copying is a form of academic dishonesty and will not be tolerated. Do not copy or allow others to steal or copy from your work. When two or more students are found to turn in identical or overly similar work, all students will receive equal punishment. If a student steals or copies your work against your will, you should report the incident immediately to your instructor.

The penalty for a violation of WSU’s Standards of Conduct for Students is a zero on the assignment or test without an option to make up the points lost. In addition, a full letter-grade will be deducted from the final grade earned in the class. Penalty ranges from this minimum to an F in the course. Instructors may consider mitigating circumstances and have some latitude in assigning sanctions. In addition, the Office of Student Standards and Accountability may impose other punishments, including expulsion from the University.
Students with Disabilities:
Reasonable accommodations are available for students with a documented disability. If you have a disability and need accommodations to fully participate in this class, please either visit or call the Access Center (Washington Building 217; 509-335-3417) to schedule an appointment with an Access Advisor. All accommodations MUST be approved through the Access Center.

Safety Statement:
Washington State University is committed to enhancing the safety of the students, faculty, staff, and visitors. It is highly recommended that you review the Campus Safety Plan (http://safetyplan.wsu.edu/) and visit the Office of Emergency Management website (http://oem.wsu.edu/) for a comprehensive listing of university policies, procedures, statistics, and information related to campus safety, emergency management, and the health and welfare of the campus community.

COURSE SCHEDULE

Please carry your textbook to class everyday
--

Tuesday, 01/13

Introduction to the course: review of syllabus, course schedule, academic honesty policy.
Before class:
Students read chapters 1 (Introduction to Science Communication) and 2 (Meeting the Needs of Specific Audiences) of textbook.

In-class lecture topics: definition, features, and purposes of scientific communication; audience and purpose analysis of documents; assessing the audience’s scientific background; identifying the audience’s cultural background; anticipating audience preferences; development of audience and use profile.

Neil deGrasse Tyson interview on Science Communication: http://www.csicop.org/specialarticles/show/neil_degrasse_tyson_-_communicating_science/

--

Thursday, 01/15

Before class:
Students read chapters 3 (Persuading Your Audience) and 4 (Weighing the Ethical Issues) of textbook.
Introduction to Infographics in Science Communication
Complete exercises on persuasion and ethical issues in scientific communication from textbook by class time.

In-class lecture topics: identifying specific persuasive goals; predicting audience response; negotiating audience resistance; recognizing constraints; recognizing unethical communication in the workplace; cause of unethical communication; understanding potential for communication abuse; relying on critical thinking for ethical decisions, deciding when and how to report ethical abuses; ethical considerations in communication for a cross-cultural audience.

Workshop on ethics and science communication: locate code of ethics for professional association in your respective majors; class discussion on comparing/contrasting the code of ethics in different fields; preparation of a quick and easy 2-page reference memo on “Guidelines for Ethical Communication.”

Tuesday, 01/20

Before class:
Complete mini-assignment # 1 by class time

In class:
Workshop: group discussion of mini-assignment # 1; exchange translations with classmates of a different major; write evaluative paragraph about the document’s level of technicality.

Discussion of Project I; Team formations for Project I.

Thurday, 01/22

Before class:
Read chapters 5 and 6 of textbook (Speech Communication)

In class lecture topics: teamwork and project management; virtual and face-to-face meetings; sources of conflict in collaborative groups; managing group conflict; overcoming difference by active listening; ethical abuses in workplace collaboration; global considerations when working in teams; digital technology and the communication process.

Workshop on teamwork and global considerations in the workplace: gender differences in the workplace; listening competence; research and write a short memo on global collaboration in building the International Space Station; research the differences, if any, in communication processes between Eastern and Western cultures.

Workshop on public & oral presentations.

Tuesday 01/27

Project 1 due in class.
Team members make short presentations about the project.

Thursday, 01/29

Before class:
Complete mini-assignment # 2 (Visual Design) and carry to class for submission.
In class:
Group workshop on how to evaluate information; identify and examine uninformed opinions and popular assumptions; conducting research to verify assumptions; write a short memo on the research process.

Tuesday, 02/03
In class:
Discuss Project # 2 goals and expectations
Group students according to majors/related majors for the project.
Workshop on how to locate potential employers in each major; using Wikipedia effectively; developing tree charts to ask the right questions; making a working bibliography of primary and secondary sources.

Thursday, 02/05
In-class workshop topics: audience and purpose statements; planning and administering questionnaires, interviews, and inquiries; research on how specific cultures have their own standards for credible evidence

Tuesday, 02/10
Project # 2 due to instructor
Team members make short presentations on the project

Thursday, 02/12
Before class:
Read chapter 12 (Designing Visual Information) of textbook
In class lecture topics: why visuals matter; when to use visuals; types of visual to consider; how to choose the right visuals; guidelines for using photographs and videos; guidelines for incorporating color; ethical considerations in obtaining and citing visual material; cultural considerations in using visuals; how the International Organization for Standardization (ISO) provides a standardized range of material for technical specifications and visual information.

Tuesday, 02/17
Before class:
Complete mini-assignment # 3 (Project Proposals) and carry to class
Peer discussion and workshop of mini-assignment # 3

Thursday, 02/19
Before class:
Read chapter 19 (Scientific Descriptions, Specifications, and Marketing Materials) of textbook.
In class lecture topics: types of scientific descriptions; objectivity in scientific descriptions; elements of a usable description; situations requiring product description;
outline for process description; situation requiring process description; guidelines for scientific marketing materials.
Workshop topics: understanding the role of audience and purpose in scientific description; differentiation between product and process descriptions; how to compose a set of specifications; research a product and process description related to your major, identify gaps, missing information, areas of confusion and rewrite the description.
Discuss specifications for Project 3
Form teams for Project 3

Tuesday 02/24
Peer reviews: Project 3 first draft.

Thursday 02/26
Workshop on speech communication
Composing a flyer for a press conference
Making a list of questions for a press conference

Tuesday, 03/03
Mock Press Conferences/Project 3 team presentations

Thursday, 03/05
Mock Press Conferences/Project 3 team presentations

Tuesday, 03/10
Mock Press Conferences/Project 3 team presentations
Final drafts of project 3 due to instructor

16-20 MARCH, SPRING BREAK

Tuesday, 03/24
Workshop on blog creation.

Thursday, 03/26
Complete mini-assignment # 5 and carry to class
Workshops:
Carry sample scientific manual from your field for usability testing; convert instructional visuals into prose without visual illustrations or special page design.
Peer feedback on mini-assignment # 5

Tuesday, 03/31
Form teams for Project V
Sign-up sheets for final presentations

Thursday, 04/02
In-class lecture topic: from script to screen.
Workshops on “How To” video project/Blog creation:
1) Breaking down an instructional video into its basic building blocks. Instructor will provide sample video.
2) Composing a script (p. 478)
3) Creating a storyboard using iPhone app Artemis Director’s Viewfinder.

Tuesday, 04/07
Mock storyboard exercise/workshop

Thursday, 04/09
First draft of Project V video due in class for peer reviews.
Peer review reports to be submitted to instructor and exchange team.
Workshop on tips for effective team presentations.

Tuesday, 04/14
Open workshop day

Thursday 04/16
In-class presentations of Project V

Tuesday, 04/21
In-class presentations of Project V

Thursday, 04/23
In-class presentations of Project V

Tuesday, 04/28
In-class presentations of Project V

Thursday, 04/30
In-class presentations of Project V

Tuesday, 05/01
Last Day of Class
Class Evaluations
